眼他写出来的各种行列式,“老陆,过来!”
老刘头也不抬地对着不远处的老陆招了招手。
“怎么了?”老陆走了过来,摸不着头脑。
“小声点,你学生正在研究我们刚才讨论的那道题。”
“我看看。”老陆闻言连忙探过头看了一眼,“嗯,还真是,这孩子倒真是对数学爱的纯粹,来我家里也不忘钻研数学。”
语气间对萧然一万個满意。
“还真让你捡到宝了。”老刘酸溜溜地说道,神色间说出去的羡慕。
老陆得意地摆了摆手,故作矜持道:“以我的水平估计也只能再教他两三年的时间,到那时他想要在数学上取得突破,就要靠他自己的造化了。”
“行了行了,装给谁看呢!”老刘笑骂一声,接着又低下头看了眼萧然的草稿,若有所思:“你觉得萧然能不能解出这道题?”
老陆闻言也仔细看了眼萧然列出的各种行列式,皱了皱眉头:“这道题有点怪,它的元素满足的是稀疏高斯分布,而要证明结果要满足的却是高斯分布,这意味着我们需要一个工具建立这两者之间的联系”
“可这个工具到底该用什么,说实话,我也只有一些粗浅的想法,我想的是使用arkov不等式估计概率,这主要是利用到联合高斯分布的性质是服从联合高斯分布的两个独立向量的和,依然服从联合高斯分布,但这之后,我并不确定高斯分布替换成均匀分布或者伯努利分布之后还能否得到多项式界”
“另外,这道题的难点主要在于如何估计这个随机矩阵的最小奇异值,而想要估计随机矩阵的最小奇异值,最主要的难点是如何突破随机矩阵理论中元素之间的独立性,如果无法解决这一步,这道题的证明也就无从谈起。”
随机矩阵理论起源于对物理模型的研究,人们在早期实验中发现,一些大型随机矩阵的特征值与奇异值的分布常常趋近于某些特定的分布,并由此提出了如半圆律、圆律与archenko-pastur律之类关于极限分布的定律。
这些定律的假设和结论类似于经典概率论里的中心极限定理(即大量相互独立的随机数之和的分布常常趋近于正态分布),这需要假设矩阵元素除了特定结构以外相互独立,再让维度趋于无穷。
尽管如此,极限毕竟是极限,从不等式估计的角度来看,用起来还是不太顺手的。
大约从上世纪80年代末开始,人们开始研究非渐进意义下的奇异值的估计,其中最核心的部分就是对于最小奇异值的估计。
随机矩阵的发展也从一开始首先处理了独立同分布的矩阵元素服从高斯分布的情形,逐渐放松
『加入书签,方便阅读』
-->> 本章未完,点击下一页继续阅读(第2页/共3页)